
A Racket Glossary

Racketfest 2023

Stefan Schwarzer, SSchwarzer.com
info@sschwarzer.com

Berlin, Germany, 2023-03-18

2

Links

◼ Rendered at
https://docs.racket-lang.org/racket-glossary

◼ Project home
https://sr.ht/~sschwarzer/racket-glossary

◼ Github PRs
https://github.com/sschwarzer/racket-glossary

https://docs.racket-lang.org/racket-glossary/
https://sr.ht/~sschwarzer/racket-glossary/
https://github.com/sschwarzer/racket-glossary

Motivation

4

Lots of concepts

◼ Based on Scheme, and “Scheme is a simple language”

◼ But Scheme has concepts unfamiliar to many learners

◼ Racket has additional (often complex) concepts

◼ The terms often don’t make it clear whether
something is a fundamental or an advanced concept

5

 pair provide display will unsafe operation class write expression void

syntax transformer channel pattern reader unit thunk arity core form

inexact number functional programming rule syntax fixnum custodian thread

definition quote environment print keyword flonum location place collection RnRS

 lambda fold exact number form sequence let over lambda macro comprehension

prompt list closure chaperone method flat contract phase language call stream

boolean continuation module require syntactic form currying equality safe operation

 higher-order function package interface byte string transparent match transformer

port combinator quasiquote tail call number symbol raco vector set writer

contract Typed Racket record identifier macro pattern parameter let namespace

struct partial application undefined hash SRFI executor box function hygiene

untrusted code opaque binding values cons cell splicing assignment future

inspector unquote named let match predicate generic API field impersonator

trusted code generator trust level string tail position functional update shadowing

 language-oriented programming identity procedure exception numeric tower

6

“Read the Racket Guide first”

= “Read the Racket Guide before the Racket Reference”

◼ Too little: You need the Racket Reference to check
details, for example on lists, strings and structs.

◼ Too much: The Racket Guide itself contains some
esoteric/advanced sections, like prompts, aborts,
units and inspectors. “Is this the introduction or not?”

7

“Check out the advanced stuff later”

◼ If a term/concept is too foreign, you have to read the
documentation anyway

◼ Then you find out that the concept is advanced stuff
and that you don’t need it 😆

8

Glossary features

9

Scribble-based

◼ The usual ...
◼ Nice layout

◼ Racket examples

◼ Project visibility
◼ Rendered on package server

◼ Integrated with documentation – including search! 🙂

10

Levels

Levels describe the relative importance of concepts when
learning Racket

◼ basic – focus on these if you start with Racket

◼ intermediate – may be needed for some tasks

◼ advanced – less important, read this later

11

12

Simplification for
common use cases

13

API information

14

Caveats

References

Development

16

Tools

◼ Git

◼ Scribble

◼ LibreOffice Draw

◼ Make

◼ Custom statistics script

17

Statistics script
$ make stats

racket glossary-stats.rkt

Completion stats, ignoring cross references:

basic |■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■···············| 39 of 55 (71 %) done

intermediate |■■■■■■■···| 5 of 34 (15 %) done

advanced |··| 0 of 25 (0 %) done

total |■■■■■■■■■■■■■■■■■■■·······························| 44 of 114 (39 %) done

...

Great for motivation! 😊

Do something like this in your projects.

18

Statistics script
$ make stats
...
Missing entries for level basic:
 Collection
 Debugging
 Display
 DrRacket
 Form
 Formatting
 Interface (API)
 Module
 Pattern (regular expressions)
 Port
 Raco
 Require
 Scheme
 ...

19

Preparation for glossary entries

◼ Read Racket Guide entry

◼ Read Racket Reference entry

Depending on glossary entry:

◼ Read other documentation

◼ Experiments

◼ Ask questions on Racket Discourse

20

Notes file

glossary-notes.md

Notes for each entry, for example:

◼ Things I want to include/emphasize

◼ Links to Racket Guide and Reference

◼ Wikipedia articles

◼ Blog entries

Challenges

22

Expanding scope

◼ Started as “just” Racket glossary

◼ But Scheme is so similar, and I like Scheme

◼ Functional Programming concepts are helpful

◼ More FP concepts (lifting, monoids, monads, ...)

◼ Recommend libraries

That’s enough, really! 😉

23

I don’t know everything

◼ Some things I’m experienced with

◼ Some things I can find out with experimentation

◼ From here on, I need help ...

◼ Obvious idea: I need pull requests – didn’t work

◼ 🠒 Ask for help/feedback on Racket Discourse 💡

24

Contributions

◼ I feel more comfortable with writing the main
document alone

◼ On the other hand, everyone can contribute
to the notes file, glossary-notes.md

◼ Project is hosted on Sourcehut – but you can
send me your suggestions any way you like

	Title page
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24

